Syllabus ID	syl132613
Subject ID	sub-132303650
更新履歴	20130327新規
授業科目名	工業熱力学(Industrial Thermodynamics)
担当教員名	出川智啓、大庭勝久
対象クラス	電子制御工学科5年生、制御情報工学科5年生
単位数	2学修単位(自学自習を含め90時間の学修をもって2単位とする)
必修/選択	選択
開講時期	通年
授業区分	
授業形態	講義
実施場所	電子制御工学科棟4F D5HR

授業の概要(本教科の工学的、社会的あるいは産業的意味)

現在の技術者には、環境とエネルギー問題への配慮は必須事項であり、これらの問題に対処する上で、熱力学とその応用である伝熱学は重要な専門分野となる。本講義では、現象論的立場から、巨視的な状態量、熱、熱平衡の概念について述べ、理想気体の状態方程式、熱力学の第1法則、第2法則、理論サイクルを講義する。更に、熱伝導と対流伝熱について述べ、各種熱伝導・熱伝達問題の数値的解法、流体力学現象との関連を講義する。

|**準備学習**(この授業を受講するときに前提となる知識)

ボイル・シャルルの法則、アボガドロの法則、物理学(力学・熱・流体力学)の基礎的知識

	Weight	目標	説明
		Α	工学倫理の自覚と多面的考察力の養成
学習•教育目標	0	В	社会要請に応えられる工学基礎学力の養成
		С	工学専門知識の創造的活用能力の養成
		D	国際的な受信・発信能力の養成
		E	産業現場における実務への対応能力と、自覚的に自己研鑚を継続できる能力の養成
		•	•

学習・教育目標 の達成度検査

- 1. 該当する学習・教育目標についての達成度検査を、年度末の目標達成度試験をもって行う。
- 2. プログラム教科目の修得と、目標達成度試験の合格をもって当該する学習・教育目標の達成とする。
- 3.目標達成度試験の実施要領は別に定める。

授業目標

- 1. 熱現象を物理学的に理解し、数式で扱う力を養うことによって、実際の状態変化に対するそれらの適用・ 定式化ができる。
- 2. 地球規模の環境問題・エネルギー問題を念頭において、論理的・数学的な観点からエネルギーの有効利用に関する基礎的な議論ができる。
- 3. 熱伝導と対流伝熱に関する基礎事項を理解し、理論的解析ができる。
- 4. 熱伝導と対流伝熱問題に関する数値的解法ができる。

0	メインテーマ	サブテーマ	参観
	前期オリエンテー ション	プログラムの学習・教育目標、授業概要・目標、スケジュール、評価 方法と基準、等の説明	
第2回	経験的温度と熱	熱力学第0法則、熱とは、温度とは、比熱とはなにか、SI 単位系	
	熱と仕事	熱と仕事の定義、熱力学的平衡状態と準静的過程	
第4回	熱力学第1法則	閉じた系と開いた系、閉じた系の第1法則	
第5回	熱力学第1法則	開いた系の第一法則、絶対仕事と工業仕事、エンタルピの定義	
第6回	理想気体の状態	定圧比熱と定容比熱、理想気体の定容変化と定圧変化	
	変化		
第7回	理想気体の状態 変化	理想気体の定温変化と断熱変化、理想気体のポリトロープ変化	

	-V		т т
	前期中間試験	前回授業までの知識と応用力の検査	×
	カルノーサイクル	理論熱効率、一般サイクルの熱効率、カルノーサイクル	
第10回	熱力学第2法則	第2法則の定義と表現、エントロピ、クロージウス積分	
第11回	熱力学第2法則	温度ーエントロピ線図	
第12回	ガスサイクル	カルノーサイクル、オットーサイクル	
第13回	ガスサイクル	ディーセルサイクル	
第14回	有効エネルギ	有効エネルギと無効エネルギ、自由エネルギ	
第15回	熱力学一般関係	熱力学一般関係式、マクスウェルの関係式、比熱の一般関係式、	
	式	マイヤーの関係	
	前期末試験	前期の総合的知識と応用力の検査	
第16回	答案の返却	答案の返却および解説	×
第17回	後期オリエンテー	プログラムの学習・教育目標、授業概要・目標、スケジュール、評価	
	ション	方法と基準、等の説明	
第18回	伝熱の形態	熱伝導、対流、輻射について	
第19回	熱伝導	熱伝導方程式、熱伝導率	
	定常熱伝導問題	平板	
第21回	定常熱伝導問題	円筒	
第22回	拡大伝熱面	フィン	
第23回	非定常熱伝導問	平板	
第24回	後期中間試験	前回授業までの知識と応用力の検査	×
第25回	非定常熱伝導問	半無限固体	
第26回	対流熱伝達	対流のメカニズム、流体の運動と熱移動	
第27回	対流熱伝達	対流伝熱の基礎式(1)	
	対流熱伝達	対流伝熱の基礎式(2)	
第29回	層流強制対流	平行平板間の流れ、円管内の流れ	
第30回	層流強制対流	等熱流束壁加熱下の温度場(平行平板、円管)	
	層流強制対流	等温壁加熱下の温度場(平行平板、円管)	
	学年末試験	後期の総合的知識と応用力の検査	
第32回	答案の返却	答案の返却および解説	×
-m ax			_

課題

出典:担当教員が作成したプリントを授業終了時に配布

提出期限:出題した次の週 提出場所:授業開始直後の教室

オフィスアワー:放課後、教員室において

評価方法と基準

評価方法:

適宜、学習内容を確認するための課題を課す。

また、定期的に授業ノートを回収し検査することによって基本的な受講姿勢を評価する。

定期試験においては、それまでに学習した総合的な知識と、与えられた条件でこれを適用できる応用力を問う。

適宜、教材(英文)に基づく課題を授業中及び長期休業中の宿題として出すので、そのレポート評価を成績に加える。

評価基準:

前期試験35%、後期試験35%、課題やレポート20%,加えて達成度を成績の10%に反映させる。60%以上を合格とする。

教科書等	熱力学-JSMEテキストシリーズ(丸善)日本機械学会編、教員が準備するプリント等
先修科目	工業力学
関連サイトの URL	日本機械学会 : http://www.jsme.or.jp/
授業アンケー トへの対応	授業進行と実際の日程とを確認しながら進めていくと共に、授業内容理解促進のため板書等を工夫する。
備考	1.試験や課題レポート等は、JABEE、大学評価・学位授与機構、文部科学省の教育実施 検査に使用することがあります。 2.授業参観されるプログラム教員は当該授業が行われる少なくとも1週間前に教科目担当 教員へ連絡してください。